Break out Session 1
Introduction of Spectroscopy in 1st and 2nd-year labs

Participants: René Boeré, Chris Brzezowski, Nada Djokic, Zahra Dezhahang, Karen Ho, Kris Ooms, Umesh Parshotam, Reza Poopari, Tadesse Mengistu, Christie McDermott, Sarah Regli, Faranak Teimoory, Ross Witherell

Institutions: University of Lethbridge, University of Alberta, Mount Royal University, The King’s University College, University of Northern BC, Brandon University, Grant MacEwan University
What’s Happening in Our Introductory Labs

• Many of us are currently using UV/Vis in our introductory labs for quantification (Beer-Lambert Law), but less commonly for characterization. It is also often introduced (sometimes in lecture) alongside the model of the atom.

• The King’s University College has been incorporating IR, MS, and NMR in their Chem 10x curriculum (lab and lecture) using a context-rich approach: Dr. Kris Ooms may provide more insight.

• As well, the University of Lethbridge will very shortly introduce ICP-AES into their intro program, making use of an autosampler.
What’s Happening in Our Organic Labs

• Several of our institutions (U of A, MacEwan, for example) introduce IR spectroscopy in the first organic chemistry course (e.g. Chem 261). The lab component includes and dry-lab tutorial/workshop with assigned problems and individual and group work. As well, sample preparation and spectrum acquisition is revisited several times later in the term.

• NMR is often introduced in the second organic course (e.g. Chem 263). The introduction to NMR in the lab is usually limited to dry-lab/tutorial work. Students may submit samples for analysis, but hands-on access to a spectrometer is rare.

• At UNBC students use NMR (samples submitted) to assess purity of products synthesized in the 2nd-year organic lab.

• Some institutions do offer a dedicated 2nd year spectroscopy course (U of A, MacEwan, for example). The labs involve lots of hands-on instrument use in addition to spectral interpretation.
What’s Happening in Our Organic Labs

• One of the interesting points that we discussed was whether or not it might actually be better to introduce NMR spectroscopy as 13C NMR before we introduce 1H NMR.

• With 1H-decoupling, 13C NMR spectra are much simpler: with only chemical shifts to worry about, 13C NMR may be a better place to “start” with NMR.
Challenges and Limitations

• A major limitation to incorporation of spectroscopy in 1st and 2nd year labs is instrument access – most common instrumentation is expensive, so for larger lab sections, hands-on access to instrumentation (other than UV/Vis and perhaps FT-IR) is difficult.

• Time can also be an issue: a complete suite of NMR experiments (1D and 2D) can take a fair amount of time for each sample submitted so that, in a lab section with several students with several samples each, acquisition time can be lengthy.

• Smaller lab sizes (enrolment) as well as use of autosampling techniques can help with this, but the challenge remains.
Broader Questions

• How do we attract students into Chemistry? How can we make first year labs more interesting/attractive?

• How do we insure that students are ready for labs? The idea of requiring a lab report the same day/period of lab came up so that students have to be prepared for the lab because it is due at the end of the lab period (Brandon University).